This EIP proposes a standard extension to ERC-20 tokens that enables issuers to apply an updatable multiplier to the UI (user interface) amount of tokens. This allows for efficient representation of stock splits, without requiring actual token minting or transfers. The extension provides a cosmetic layer that modifies how token balances are displayed to users while maintaining the underlying token economics.
Current ERC-20 implementations lack an efficient mechanism to handle real-world asset scenarios such as stock splits: When a company performs a 2-for-1 stock split, all shareholders should see their holdings double. Currently, this requires minting new tokens to all holders, which is gas-intensive and operationally complex. Moreover, the internal accounting in DeFi protocols would break from such a split.
The inability to efficiently handle this scenario limits the adoption of tokenized real-world assets (RWAs) on Ethereum. This EIP addresses these limitations by introducing a multiplier mechanism that adjusts the displayed balance without altering the actual token supply.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
Multiplier Precision: The UI multiplier MUST use 18 decimal places for precision (1e18 represents a multiplier of 1.0).
Backwards Compatibility: The standard ERC-20 functions (balanceOf, transfer, transferFrom, etc.) MUST continue to work with raw amounts.
Event Emission: The UIMultiplierUpdated event MUST be emitted whenever the multiplier is changed.
Design Decisions:
Separate UI Functions: Rather than modifying the core ERC-20 functions, we provide separate UI-specific functions. This ensures backward compatibility and allows integrators to opt-in to the UI scaling feature.
18 Decimal Precision: Using 18 decimals for the multiplier provides sufficient precision for most use cases while aligning with Ethereum's standard decimal representation.
No Automatic Updates: The multiplier must be explicitly set by authorized parties, giving issuers full control over when and how adjustments are made.
Raw Amount Preservation: All actual token operations continue to use raw amounts, ensuring that the multiplier is purely a display feature and doesn't affect the underlying token economics.
Alternative Approaches Considered:
Rebasing Tokens: While rebasing tokens adjust supply automatically, they create complexity for integrators and can break composability with DeFi protocols.
Wrapper Tokens: Creating wrapper tokens for each adjustment event adds unnecessary complexity and gas costs.
Index/Exchange Rate Tokens confer similar advantages to the proposed Scaled UI approach, but is ultimately less intuitive and requires more calculations on the UI layers.
Off-chain Solutions: Purely off-chain solutions lack standardization and require trust in centralized providers.


This EIP is fully backwards compatible with ERC-20. Existing ERC-20 functions continue to work as expected, and the UI scaling features are opt-in through additional functions.
Example test scenarios:
Verify that initial multiplier is 1.0 (1e18)
Confirm balanceOf equals balanceOfUI initially
Set multiplier to 2.0 (2e18) for 2-for-1 split
Verify UI balance is double the raw balance
Confirm conversion functions work correctly
Unauthorized changes to the UI multiplier could mislead users about their holdings
Implementations MUST use robust access control mechanisms
The setUIMultiplier function MUST be restricted to authorized addresses (e.g., contract owner or a designated role).
Risk of overflow when applying the multiplier
Use SafeMath or Solidity 0.8.0+ automatic overflow protection
Clear communication is essential when UI amounts differ from raw amounts
Integrators MUST clearly indicate when displaying UI-adjusted balances
For automated multiplier updates, the system may depend on oracles
Oracle failures or manipulations could affect displayed balances
Wallets supporting this standard should:
Check if a token implements IScaledUIAmount interface
Display both raw and UI amounts, clearly labeled
Use balanceOfUI() for primary balance display
Handle transfers using raw amounts (standard ERC-20 functions)
Example JavaScript integration:
Exchanges should:
Store and track the multiplier for each supported token
Display UI amounts in user interfaces
Use raw amounts for all internal accounting
Provide clear documentation about the scaling mechanism
Example implementation:
DeFi protocols should:
Continue using raw amounts for all protocol operations
Provide UI helpers for displaying adjusted amounts
Emit events with both raw and UI amounts where relevant
Document clearly which amounts are used in calculations
Copyright and related rights waived via CC0.