ERC-4834: Hierarchical Domains

Extremely generic name resolution


Metadata
Status: FinalStandards Track: ERCCreated: 2022-02-22
Authors
Gavin John (@Pandapip1)

Abstract


This is a standard for generic name resolution with arbitrarily complex access control and resolution. It permits a contract that implements this EIP (referred to as a "domain" hereafter) to be addressable with a more human-friendly name, with a similar purpose to ERC-137 (also known as "ENS").

Motivation


The advantage of this EIP over existing standards is that it provides a minimal interface that supports name resolution, adds standardized access control, and has a simple architecture. ENS, although useful, has a comparatively complex architecture and does not have standard access control.

In addition, all domains (including subdomains, TLDs, and even the root itself) are actually implemented as domains, meaning that name resolution is a simple iterative algorithm, not unlike DNS itself.

Specification


The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

Contract Interface


Name Resolution

To resolve a name (like "a.b.c"), split it by the delimiter (resulting in something like ["a", "b", "c"]). Set domain initially to the root domain, and path to be an empty list.

Pop off the last element of the array ("c") and add it to the path, then call domain.hasDomain(path). If it's false, then the domain resolution fails. Otherwise, set the domain to domain.getDomain(path). Repeat until the list of split segments is empty.

There is no limit to the amount of nesting that is possible. For example, 0.1.2.3.4.5.6.7.8.9.a.b.c.d.e.f.g.h.i.j.k.l.m.n.o.p.q.r.s.t.u.v.w.x.y.z would be valid if the root contains z, and z contains y, and so on.

Here is a solidity function that resolves a name:


Optional Extension: Registerable


Optional Extension: Enumerable


Optional Extension: Access Control


Rationale


This EIP's goal, as mentioned in the abstract, is to have a simple interface for resolving names. Here are a few design decisions and why they were made:

  • Name resolution algorithm
    • Unlike ENS's resolution algorithm, this EIP's name resolution is fully under the control of the contracts along the resolution path.
    • This behavior is more intuitive to users.
    • This behavior allows for greater flexibility - e.g. a contract that changes what it resolves to based on the time of day.
  • Parent domain access control
    • A simple "ownable" interface was not used because this specification was designed to be as generic as possible. If an ownable implementation is desired, it can be implemented.
    • This also gives parent domains the ability to call subdomains' access control methods so that subdomains, too, can choose whatever access control mechanism they desire
  • Subdomain access control
    • These methods are included so that subdomains aren't always limited to their parent domain's access control
    • The root domain can be controlled by a DAO with a non-transferable token with equal shares, a TLD can be controlled by a DAO with a token representing stake, a domain of that TLD can be controlled by a single owner, a subdomain of that domain can be controlled by a single owner linked to an NFT, and so on.
    • Subdomain access control functions are suggestions: an ownable domain might implement an owner override, so that perhaps subdomains might be recovered if the keys are lost.

Backwards Compatibility


This EIP is general enough to support ENS, but ENS is not general enough to support this EIP.

Security Considerations


Malicious canMoveSubdomain (Black Hole)

Description: Malicious canMoveSubdomain

Moving a subdomain using setDomain is a potentially dangerous operation.

Depending on the parent domain's implementation, if a malicious new subdomain unexpectedly returns false on canMoveSubdomain, that subdomain can effectively lock the ownership of the domain.

Alternatively, it might return true when it isn't expected (i.e. a backdoor), allowing the contract owner to take over the domain.

Mitigation: Malicious canMoveSubdomain

Clients should help by warning if canMoveSubdomain or canDeleteSubdomain for the new subdomain changes to false. It is important to note, however, that since these are functions, it is possible for the value to change depending on whether or not it has already been linked. It is also still possible for it to unexpectedly return true. It is therefore recommended to always audit the new subdomain's source code before calling setDomain.

Parent Domain Resolution

Description: Parent Domain Resolution

Parent domains have full control of name resolution for their subdomains. If a particular domain is linked to a.b.c, then b.c can, depending on its code, set a.b.c to any domain, and c can set b.c itself to any domain.

Mitigation: Parent Domain Resolution

Before acquiring a domain that has been pre-linked, it is recommended to always have the contract and all the parents up to the root audited.

Copyright


Copyright and related rights waived via CC0.