ERC-165: Standard Interface Detection
Simple Summary
Creates a standard method to publish and detect what interfaces a smart contract implements.
Abstract
Herein, we standardize the following:
- How interfaces are identified
- How a contract will publish the interfaces it implements
- How to detect if a contract implements ERC-165
- How to detect if a contract implements any given interface
Motivation
For some "standard interfaces" like the ERC-20 token interface, it is sometimes useful to query whether a contract supports the interface and if yes, which version of the interface, in order to adapt the way in which the contract is to be interacted with. Specifically for ERC-20, a version identifier has already been proposed. This proposal standardizes the concept of interfaces and standardizes the identification (naming) of interfaces.
Specification
How Interfaces are Identified
For this standard, an interface is a set of function selectors as defined by the Ethereum ABI. This a subset of Solidity's concept of interfaces and the interface
keyword definition which also defines return types, mutability and events.
We define the interface identifier as the XOR of all function selectors in the interface. This code example shows how to calculate an interface identifier:
Note: interfaces do not permit optional functions, therefore, the interface identity will not include them.
How a Contract will Publish the Interfaces it Implements
A contract that is compliant with ERC-165 shall implement the following interface (referred as ERC165.sol
):
The interface identifier for this interface is 0x01ffc9a7
. You can calculate this by running bytes4(keccak256('supportsInterface(bytes4)'));
or using the Selector
contract above.
Therefore the implementing contract will have a supportsInterface
function that returns:
true
wheninterfaceID
is0x01ffc9a7
(EIP165 interface)false
wheninterfaceID
is0xffffffff
true
for any otherinterfaceID
this contract implementsfalse
for any otherinterfaceID
This function must return a bool and use at most 30,000 gas.
Implementation note, there are several logical ways to implement this function. Please see the example implementations and the discussion on gas usage.
How to Detect if a Contract Implements ERC-165
- The source contract makes a
STATICCALL
to the destination address with input data:0x01ffc9a701ffc9a700000000000000000000000000000000000000000000000000000000
and gas 30,000. This corresponds tocontract.supportsInterface(0x01ffc9a7)
. - If the call fails or return false, the destination contract does not implement ERC-165.
- If the call returns true, a second call is made with input data
0x01ffc9a7ffffffff00000000000000000000000000000000000000000000000000000000
. - If the second call fails or returns true, the destination contract does not implement ERC-165.
- Otherwise it implements ERC-165.
How to Detect if a Contract Implements any Given Interface
- If you are not sure if the contract implements ERC-165, use the above procedure to confirm.
- If it does not implement ERC-165, then you will have to see what methods it uses the old-fashioned way.
- If it implements ERC-165 then just call
supportsInterface(interfaceID)
to determine if it implements an interface you can use.
Rationale
We tried to keep this specification as simple as possible. This implementation is also compatible with the current Solidity version.
Backwards Compatibility
The mechanism described above (with 0xffffffff
) should work with most of the contracts previous to this standard to determine that they do not implement ERC-165.
Also the ENS already implements this EIP.
Test Cases
Following is a contract that detects which interfaces other contracts implement. From @fulldecent and @jbaylina.
Implementation
This approach uses a view
function implementation of supportsInterface
. The execution cost is 586 gas for any input. But contract initialization requires storing each interface (SSTORE
is 20,000 gas). The ERC165MappingImplementation
contract is generic and reusable.
Following is a pure
function implementation of supportsInterface
. The worst-case execution cost is 236 gas, but increases linearly with a higher number of supported interfaces.
With three or more supported interfaces (including ERC165 itself as a required supported interface), the mapping approach (in every case) costs less gas than the pure approach (at worst case).
Version history
-
PR 1640, finalized 2019-01-23 -- This corrects the noThrowCall test case to use 36 bytes rather than the previous 32 bytes. The previous code was an error that still silently worked in Solidity 0.4.x but which was broken by new behavior introduced in Solidity 0.5.0. This change was discussed at #1640.
-
EIP 165, finalized 2018-04-20 -- Original published version.
Copyright
Copyright and related rights waived via CC0.