A standard interface for contracts that manage multiple token types. A single deployed contract may include any combination of fungible tokens, non-fungible tokens or other configurations (e.g. semi-fungible tokens).
This standard outlines a smart contract interface that can represent any number of fungible and non-fungible token types. Existing standards such as ERC-20 require deployment of separate contracts per token type. The ERC-721 standard's token ID is a single non-fungible index and the group of these non-fungibles is deployed as a single contract with settings for the entire collection. In contrast, the ERC-1155 Multi Token Standard allows for each token ID to represent a new configurable token type, which may have its own metadata, supply and other attributes.
The _id argument contained in each function's argument set indicates a specific token or token type in a transaction.
Tokens standards like ERC-20 and ERC-721 require a separate contract to be deployed for each token type or collection. This places a lot of redundant bytecode on the Ethereum blockchain and limits certain functionality by the nature of separating each token contract into its own permissioned address. With the rise of blockchain games and platforms like Enjin Coin, game developers may be creating thousands of token types, and a new type of token standard is needed to support them. However, ERC-1155 is not specific to games and many other applications can benefit from this flexibility.
New functionality is possible with this design such as transferring multiple token types at once, saving on transaction costs. Trading (escrow / atomic swaps) of multiple tokens can be built on top of this standard and it removes the need to "approve" individual token contracts separately. It is also easy to describe and mix multiple fungible or non-fungible token types in a single contract.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
Smart contracts implementing the ERC-1155 standard MUST implement all of the functions in the ERC1155 interface.
Smart contracts implementing the ERC-1155 standard MUST implement the ERC-165 supportsInterface function and MUST return the constant value true if 0xd9b67a26 is passed through the interfaceID argument.
Smart contracts MUST implement all of the functions in the ERC1155TokenReceiver interface to accept transfers. See "Safe Transfer Rules" for further detail.
Smart contracts MUST implement the ERC-165 supportsInterface function and signify support for the ERC1155TokenReceiver interface to accept transfers. See "ERC1155TokenReceiver ERC-165 rules" for further detail.
To be more explicit about how the standard safeTransferFrom and safeBatchTransferFrom functions MUST operate with respect to the ERC1155TokenReceiver hook functions, a list of scenarios and rules follows.
Scenario#1 : The recipient is not a contract.
onERC1155Received and onERC1155BatchReceived MUST NOT be called on an EOA (Externally Owned Account).Scenario#2 : The transaction is not a mint/transfer of a token.
onERC1155Received and onERC1155BatchReceived MUST NOT be called outside of a mint or transfer process.Scenario#3 : The receiver does not implement the necessary ERC1155TokenReceiver interface function(s).
Scenario#4 : The receiver implements the necessary ERC1155TokenReceiver interface function(s) but returns an unknown value.
Scenario#5 : The receiver implements the necessary ERC1155TokenReceiver interface function(s) but throws an error.
Scenario#6 : The receiver implements the ERC1155TokenReceiver interface and is the recipient of one and only one balance change (e.g. safeTransferFrom called).
ERC1155TokenReceiver hook is called on a recipient contract.ERC1155TokenReceiver hook is called on the recipient contract.onERC1155Received or onERC1155BatchReceived MUST be called on the recipient contract.onERC1155Received hook SHOULD be called on the recipient contract and its rules followed.
onERC1155BatchReceived hook MAY be called on the recipient contract and its rules followed.
Scenario#7 : The receiver implements the ERC1155TokenReceiver interface and is the recipient of more than one balance change (e.g. safeBatchTransferFrom called).
ERC1155TokenReceiver hook MUST be updated before the ERC1155TokenReceiver hook is called on the recipient contract.ERC1155TokenReceiver hook is called on the recipient contract.onERC1155Received or onERC1155BatchReceived MUST be called on the recipient as many times as necessary such that every balance change for the recipient in the scenario is accounted for.
onERC1155BatchReceived hook SHOULD be called on the recipient contract and its rules followed.
onERC1155Received hook MAY be called on the recipient contract and its rules followed.
Scenario#8 : You are the creator of a contract that implements the ERC1155TokenReceiver interface and you forward the token(s) onto another address in one or both of onERC1155Received and onERC1155BatchReceived.
safeTransferFrom or safeBatchTransferFrom in a new context.
_data argument MAY be re-purposed for the new context.Scenario#9 : You are transferring tokens via a non-standard API call i.e. an implementation specific API and NOT safeTransferFrom or safeBatchTransferFrom.
TransferSingle and TransferBatch events alone.ERC1155TokenReceiver hooks still need to be called on it and the return values respected the same as if a standard transfer function had been called.
safeTransferFrom or safeBatchTransferFrom functions MUST revert if a receiving contract does not implement the ERC1155TokenReceiver interface, a non-standard function MAY proceed with the transfer.safeTransferFrom rules:
_from account (see "Approval" section)._to is the zero address._id is lower than the _value sent to the recipient.TransferSingle event to reflect the balance change (see "TransferSingle and TransferBatch event rules" section)._to is a smart contract (e.g. code size > 0). If so, it MUST call onERC1155Received on _to and act appropriately (see "onERC1155Received rules" section).
_data argument provided by the sender for the transfer MUST be passed with its contents unaltered to the onERC1155Received hook function via its _data argument.safeBatchTransferFrom rules:
_from account (see "Approval" section)._to is the zero address._ids is not the same as length of _values._ids is lower than the respective amount(s) in _values sent to the recipient.TransferSingle or TransferBatch event(s) such that all the balance changes are reflected (see "TransferSingle and TransferBatch event rules" section)._to is a smart contract (e.g. code size > 0). If so, it MUST call onERC1155Received or onERC1155BatchReceived on _to and act appropriately (see "onERC1155Received and onERC1155BatchReceived rules" section).
_data argument provided by the sender for the transfer MUST be passed with its contents unaltered to the ERC1155TokenReceiver hook function(s) via their _data argument.TransferSingle and TransferBatch event rules:
TransferSingle SHOULD be used to indicate a single balance transfer has occurred between a _from and _to pair.
TransferBatch is designed for this to reduce gas consumption._operator argument MUST be the address of an account/contract that is approved to make the transfer (SHOULD be msg.sender)._from argument MUST be the address of the holder whose balance is decreased._to argument MUST be the address of the recipient whose balance is increased._id argument MUST be the token type being transferred._value argument MUST be the number of tokens the holder balance is decreased by and match what the recipient balance is increased by._from argument MUST be set to 0x0 (i.e. zero address). See "Minting/creating and burning/destroying rules"._to argument MUST be set to 0x0 (i.e. zero address). See "Minting/creating and burning/destroying rules".TransferBatch SHOULD be used to indicate multiple balance transfers have occurred between a _from and _to pair.
TransferSingle is designed for this to reduce gas consumption._operator argument MUST be the address of an account/contract that is approved to make the transfer (SHOULD be msg.sender)._from argument MUST be the address of the holder whose balance is decreased for each entry pair in _ids and _values._to argument MUST be the address of the recipient whose balance is increased for each entry pair in _ids and _values._ids array argument MUST contain the ids of the tokens being transferred._values array argument MUST contain the number of token to be transferred for each corresponding entry in _ids._ids and _values MUST have the same length._from argument MUST be set to 0x0 (i.e. zero address). See "Minting/creating and burning/destroying rules"._to argument MUST be set to 0x0 (i.e. zero address). See "Minting/creating and burning/destroying rules".0x0 minus the total value transferred to 0x0 observed via the TransferSingle and TransferBatch events MAY be used by clients and exchanges to determine the "circulating supply" for a given token ID.TransferSingle event from 0x0 to 0x0, with the token creator as _operator, and a _value of 0.TransferSingle and TransferBatch events MUST be emitted to reflect all the balance changes that have occurred before any call(s) to onERC1155Received or onERC1155BatchReceived.
onERC1155Received rules:
_operator argument MUST be the address of an account/contract that is approved to make the transfer (SHOULD be msg.sender)._from argument MUST be the address of the holder whose balance is decreased.
_from MUST be 0x0 for a mint._id argument MUST be the token type being transferred._value argument MUST be the number of tokens the holder balance is decreased by and match what the recipient balance is increased by._data argument MUST contain the information provided by the sender for the transfer with its contents unaltered.
_data argument sent via the safeTransferFrom or safeBatchTransferFrom call for this transfer.bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))
bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)")) the transfer MUST be completed or MUST revert if any other conditions are not met for success.bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)")) the transaction MUST be reverted.onERC1155Received (and/or onERC1155BatchReceived) MAY be called multiple times in a single transaction and the following requirements must be met:
onERC1155Received and onERC1155BatchReceived describes all balance changes that occurred during the transaction in the order submitted.onERC1155Received hook function if the transfer operation is transferring the token to itself.onERC1155BatchReceived rules:
_operator argument MUST be the address of an account/contract that is approved to make the transfer (SHOULD be msg.sender)._from argument MUST be the address of the holder whose balance is decreased.
_from MUST be 0x0 for a mint._ids argument MUST be the list of tokens being transferred._values argument MUST be the list of number of tokens (matching the list and order of tokens specified in _ids) the holder balance is decreased by and match what the recipient balance is increased by._data argument MUST contain the information provided by the sender for the transfer with its contents unaltered.
_data argument sent via the safeBatchTransferFrom call for this transfer.bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))
bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)")) the transfer MUST be completed or MUST revert if any other conditions are not met for success.bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)")) the transaction MUST be reverted.onERC1155BatchReceived (and/or onERC1155Received) MAY be called multiple times in a single transaction and the following requirements must be met:
onERC1155Received and onERC1155BatchReceived describes all balance changes that occurred during the transaction in the order submitted.onERC1155BatchReceived hook function if the transfer operation is transferring the token(s) to itself.ERC1155TokenReceiver ERC-165 rules:
supportsInterface function SHOULD be as follows:
true if 0x01ffc9a7 is passed through the interfaceID argument. This signifies ERC-165 support.true if 0x4e2312e0 is passed through the interfaceID argument. This signifies ERC-1155 ERC1155TokenReceiver support.Implementation specific transfer API rules:
safeTransferFrom or safeBatchTransferFrom (as appropriate) rules MUST still be followed if the receiver implements the ERC1155TokenReceiver interface. If it does not the non-standard implementation SHOULD revert but MAY proceed.function myTransferFrom(address _from, address _to, uint256[] calldata _ids, uint256[] calldata _values);.myTransferFrom updates the balances for _from and _to addresses for all _ids and _values.myTransferFrom emits TransferBatch with the details of what was transferred from address _from to address _to.myTransferFrom checks if _to is a contract address and determines that it is so (if not, then the transfer can be considered successful).myTransferFrom calls onERC1155BatchReceived on _to and it reverts or returns an unknown value (if it had returned bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)")) the transfer can be considered successful).myTransferFrom SHOULD revert the transaction immediately as receipt of the token(s) was not explicitly accepted by the onERC1155BatchReceived function.myTransferFrom wishes to continue it MUST call supportsInterface(0x4e2312e0) on _to and if it returns the constant value true the transaction MUST be reverted, as it is now known to be a valid receiver and the previous acceptance step failed.
supportsInterface(0x4e2312e0) at a previous step if you wanted to gather and act upon that information earlier, such as in a hybrid standards scenario.supportsInterface(0x4e2312e0) on _to reverts or returns a value other than the constant value true the myTransferFrom function MAY consider this transfer successful.
safeTransferFrom and safeBatchTransferFrom):
ERC1155TokenReceiver hook function(s) have to be called on it.ERC1155TokenReceiver hook MUST be updated (and emitted) before the ERC1155TokenReceiver hook is called.ERC1155TokenReceiver hook functions that are called MUST be respected if they are implemented.ERC1155TokenReceiver hook functions. safeTransferFrom and safeBatchTransferFrom MUST revert in that case (unless it is a hybrid standards implementation see "Backwards Compatibility").Minting/creating and burning/destroying rules:
TransferSingle event from 0x0 to 0x0, with the token creator as _operator, and a _value of 0._from argument MUST be set to 0x0 (i.e. zero address) to flag the transfer as a mint to contract observers.
_to argument MUST be set to 0x0 (i.e. zero address) to flag the transfer as a burn to contract observers.0x0 (that is impl specific), only the _to argument in the event MUST be set to 0x0 as above.0x0 minus the total value transferred to 0x0 observed via the TransferSingle and TransferBatch events MAY be used by clients and exchanges to determine the "circulating supply" for a given token ID.safeTransferFrom or safeBatchTransferFrom. If so the "Implementation specific transfer API rules" section would be appropriate.
ERC1155TokenReceiver hook function(s) if the mint operation is transferring the token(s) to itself. In all other cases the ERC1155TokenReceiver rules MUST be followed as appropriate for the implementation (i.e. safe, custom and/or hybrid).The URI value allows for ID substitution by clients. If the string {id} exists in any URI, clients MUST replace this with the actual token ID in hexadecimal form. This allows for a large number of tokens to use the same on-chain string by defining a URI once, for that large number of tokens.
[0-9a-f] with no 0x prefix.Example of such a URI: https://token-cdn-domain/{id}.json would be replaced with https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json if the client is referring to token ID 314592/0x4CCE0.
The optional ERC1155Metadata_URI extension can be identified with the ERC-165 Standard Interface Detection.
If the optional ERC1155Metadata_URI extension is included:
supportsInterface function MUST return the constant value true if 0x0e89341c is passed through the interfaceID argument.URI event if the change can be expressed with an event (i.e. it isn't dynamic/programmatic).
URI event during a mint operation but it is NOT mandatory. An observer MAY fetch the metadata uri at mint time from the uri function if it was not emitted.uri function SHOULD be used to retrieve values if no event was emitted.uri function MUST return the same value as the latest event for an _id if it was emitted.uri function MUST NOT be used to check for the existence of a token as it is possible for an implementation to return a valid string even if the token does not exist.This JSON schema is loosely based on the "ERC721 Metadata JSON Schema", but includes optional formatting to allow for ID substitution by clients. If the string {id} exists in any JSON value, it MUST be replaced with the actual token ID, by all client software that follows this standard.
[0-9a-f] with no 0x prefix.An example of an ERC-1155 Metadata JSON file follows. The properties array proposes some SUGGESTED formatting for token-specific display properties and metadata.
Metadata localization should be standardized to increase presentation uniformity across all languages. As such, a simple overlay method is proposed to enable localization. If the metadata JSON file contains a localization attribute, its content MAY be used to provide localized values for fields that need it. The localization attribute should be a sub-object with three attributes: uri, default and locales. If the string {locale} exists in any URI, it MUST be replaced with the chosen locale by all client software.
Base URI:
es.json:
fr.json:
The function setApprovalForAll allows an operator to manage one's entire set of tokens on behalf of the approver. To permit approval of a subset of token IDs, an interface such as ERC-1761 Scoped Approval Interface is suggested.
The counterpart isApprovedForAll provides introspection into any status set by setApprovalForAll.
An owner SHOULD be assumed to always be able to operate on their own tokens regardless of approval status, so should SHOULD NOT have to call setApprovalForAll to approve themselves as an operator before they can operate on them.
The symbol function (found in the ERC-20 and ERC-721 standards) was not included as we do not believe this is a globally useful piece of data to identify a generic virtual item / asset and are also prone to collisions. Short-hand symbols are used in tickers and currency trading, but they aren't as useful outside of that space.
The name function (for human-readable asset names, on-chain) was removed from the standard to allow the Metadata JSON to be the definitive asset name and reduce duplication of data. This also allows localization for names, which would otherwise be prohibitively expensive if each language string was stored on-chain, not to mention bloating the standard interface. While this decision may add a small burden on implementers to host a JSON file containing metadata, we believe any serious implementation of ERC-1155 will already utilize JSON Metadata.
The requirement to emit TransferSingle or TransferBatch on balance change implies that a valid implementation of ERC-1155 redeploying to a new contract address MUST emit events from the new contract address to replicate the deprecated contract final state. It is valid to only emit a minimal number of events to reflect only the final balance and omit all the transactions that led to that state. The event emit requirement is to ensure that the current state of the contract can always be traced only through events. To alleviate the need to emit events when changing contract address, consider using the proxy pattern, such as described in EIP-2535. This will also have the added benefit of providing a stable contract address for users.
The standard supports safeTransferFrom and onERC1155Received functions because they are significantly cheaper for single token-type transfers, which is arguably a common use case.
The standard only supports safe-style transfers, making it possible for receiver contracts to depend on onERC1155Received or onERC1155BatchReceived function to be always called at the end of a transfer.
As the Ethereum ecosystem continues to grow, many dapps are relying on traditional databases and explorer API services to retrieve and categorize data. The ERC-1155 standard guarantees that event logs emitted by the smart contract will provide enough data to create an accurate record of all current token balances. A database or explorer may listen to events and be able to provide indexed and categorized searches of every ERC-1155 token in the contract.
The function setApprovalForAll allows an operator to manage one's entire set of tokens on behalf of the approver. It enables frictionless interaction with exchange and trade contracts.
Restricting approval to a certain set of token IDs, quantities or other rules MAY be done with an additional interface or an external contract. The rationale is to keep the ERC-1155 standard as generic as possible for all use-cases without imposing a specific approval scheme on implementations that may not need it. Standard token approval interfaces can be used, such as the suggested ERC-1761 Scoped Approval Interface which is compatible with ERC-1155.
There have been requirements during the design discussions to have this standard be compatible with existing standards when sending to contract addresses, specifically ERC-721 at time of writing.
To cater for this scenario, there is some leeway with the revert logic should a contract not implement the ERC1155TokenReceiver as per "Safe Transfer Rules" section above, specifically "Scenario#3 : The receiver does not implement the necessary ERC1155TokenReceiver interface function(s)".
Hence in a hybrid ERC-1155 contract implementation an extra call MUST be made on the recipient contract and checked before any hook calls to onERC1155Received or onERC1155BatchReceived are made.
Order of operation MUST therefore be:
supportsInterface(0x4e2312e0) on the recipient contract, providing at least 10,000 gas.true the implementation proceeds as a regular ERC-1155 implementation, with the call(s) to the onERC1155Received or onERC1155BatchReceived hooks and rules associated.true the implementation can assume the recipient contract is not an ERC1155TokenReceiver and follow its other standard's rules for transfers.Note that a pure implementation of a single standard is recommended rather than a hybrid solution, but an example of a hybrid ERC-1155/ERC-721 contract is linked in the references section under implementations.
An important consideration is that even if the tokens are sent with another standard's rules the ERC-1155 transfer events MUST still be emitted. This is so the balances can still be determined via events alone as per ERC-1155 standard rules.
This standard can be used to represent multiple token types for an entire domain. Both fungible and non-fungible tokens can be stored in the same smart-contract.
The safeBatchTransferFrom function allows for batch transfers of multiple token IDs and values. The design of ERC-1155 makes batch transfers possible without the need for a wrapper contract, as with existing token standards. This reduces gas costs when more than one token type is included in a batch transfer, as compared to single transfers with multiple transactions.
Another advantage of standardized batch transfers is the ability for a smart contract to respond to the batch transfer in a single operation using onERC1155BatchReceived.
It is RECOMMENDED that clients and wallets sort the token IDs and associated values (in ascending order) when posting a batch transfer, as some ERC-1155 implementations offer significant gas cost savings when IDs are sorted. See Horizon Games - Multi-Token Standard "packed balance" implementation for an example of this.
The balanceOfBatch function allows clients to retrieve balances of multiple owners and token IDs with a single call.
In order to keep storage requirements light for contracts implementing ERC-1155, enumeration (discovering the IDs and values of tokens) must be done using event logs. It is RECOMMENDED that clients such as exchanges and blockchain explorers maintain a local database containing the token ID, Supply, and URI at the minimum. This can be built from each TransferSingle, TransferBatch, and URI event, starting from the block the smart contract was deployed until the latest block.
ERC-1155 contracts must therefore carefully emit TransferSingle or TransferBatch events in any instance where tokens are created, minted, transferred or destroyed.
The following strategies are examples of how you MAY mix fungible and non-fungible tokens together in the same contract. The standard does NOT mandate how an implementation must do this.
The top 128 bits of the uint256 _id parameter in any ERC-1155 function MAY represent the base token ID, while the bottom 128 bits MAY represent the index of the non-fungible to make it unique.
Non-fungible tokens can be interacted with using an index based accessor into the contract/token data set. Therefore to access a particular token set within a mixed data contract and a particular non-fungible within that set, _id could be passed as <uint128: base token id><uint128: index of non-fungible>.
To identify a non-fungible set/category as a whole (or a fungible) you COULD just pass in the base id via the _id argument as <uint128: base token id><uint128: zero>. If your implementation uses this technique this naturally means the index of a non-fungible SHOULD be 1-based.
Inside the contract code the two pieces of data needed to access the individual non-fungible can be extracted with uint128(~0) and the same mask shifted by 128.
Note that 128 is an arbitrary number, an implementation MAY choose how they would like this split to occur as suitable for their use case. An observer of the contract would simply see events showing balance transfers and mints happening and MAY track the balances using that information alone. For an observer to be able to determine type (non-fungible or fungible) from an ID alone they would have to know the split ID bits format on a implementation by implementation basis.
The ERC-1155 Reference Implementation is an example of the split ID bits strategy.
Another simple way to represent non-fungibles is to allow a maximum value of 1 for each non-fungible token. This would naturally mirror the real world, where unique items have a quantity of 1 and fungible items have a quantity greater than 1.
Standards
Implementations
Articles & Discussions
Copyright and related rights waived via CC0.